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Scale invariance rule in electromagnetic scattering
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Abstract

The volume integral equation formalism is used to prove the scale invariance rule for an arbitrarily sized scatterer with
an arbitrary shape, morphology, and orientation. The only assumptions are that the scatterer is made of optically isotropic
linear materials and is embedded in a homogeneous, linear, isotropic, and nonabsorbing infinite medium.
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1. Introduction

A fundamental property of electromagnetic scattering is the so-called scale invariance rule (SIR). For
homogeneous or layered spheres, this rule follows directly from the formulas of the Lorenz—Mie theory. It can
also be derived for homogeneous nonspherical scatterers from the 7-matrix formulas (see Section 5.8.2 of [1]).
However, a general derivation of the SIR for a particle with arbitrary size, shape, morphology, and orientation
has not been given yet and is the subject of this short note. In order to avoid redundancy and save space, we
will assume that the reader is familiar with [1] and will use exactly the same terminology and notation.

2. Proof of the scale invariance rule

As in Chapter 2 of [1], we consider a finite scattering object in the form of an arbitrary single body or an
arbitrary fixed aggregate embedded in an infinite, homogeneous, linear, isotropic, and nonabsorbing medium.
The interior of the particle is assumed to be filled with an isotropic, linear, and possibly inhomogeneous
material (Fig. 1). We start off where Sections 2.1 and 2.2 of [1] end by introducing the following dimensionless
quantities:
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Fig. 1. Schematic representation of the electromagnetic scattering problem. The unshaded exterior region Vgxr is unbounded in all
directions, whereas the shaded area represents the interior region Vint.
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where r is the radius vector connecting the origin O of the laboratory reference frame and the observation
point, k; is the wave number in the host medium, 7'(r,r’) is the dyadic transition operator defined by Eq.
(2.17) of [1], and m(r) is the refractive index of the scatterer relative to that of the host medium. It is then rather
obvious that the Lippmann—Schwinger equation (Eq. (2.18) of [1]) can be rewritten in the form
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where d(r) is the three-dimensional Dirac delta function and the dimensionless “volume” ViNT is Obtained
from the actual volume of the scatterer Vint by multiplying all dimensions of the latter by k. It is also taken
into account that

5(r) = a*d(ar). ] (7)

Solving Eq. (6) by iteration shows that the dimensionless dyadic transition operator T'(F,¥') depends on the
dimensionless particle volume VNt = kf Vint rather than on the actual particle volume and on the wave
number separately.

The next steps are to assume that the scattering object is illuminated by a plane electromagnetic wave, to
consider scattering in the far-field zone, and to introduce the dimensionless scattering dyadic as follows:
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where A (1**, A'™) is the scattering dyadic defined by Eq. (2.26) of [1]. Then Eq. (2.27) of [1] takes the form
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which shows again that the dimensionless scattering dyadic is a function of the dimensionless particle volume
rather than a function of the actual particle volume as well as of the wave number. Of course, the same is true
of the dimensionless amplitude scattering matrix S(**,a"™) = k,S(A™*, 7"™), where S(H**,a™) is the
amplitude scattering matrix defined by Eq. (2.30) of [1].

The SIR is a direct consequence of these results and states the following. If one multiplies all linear
dimensions of the scattering object by a constant factor f (thereby not changing the shape and morphology of
the object and its orientation with respect to the laboratory coordinate system) and multiplies the wave
number k; by a factor 1/f then the dimensionless scattering dyadic and the dimensionless amplitude scattering
matrix of the object do not change.

3. Discussion

The SIR can be reformulated as follows. Consider a class of geometrically similar objects with geometrically
similar spatial distributions of the relative refractive index and the same orientation with respect to the
laboratory reference frame (Fig. 2). It is clear that each object from the class can be uniquely identified by the
value of a typical linear dimension a (for example, the largest or the smallest dimension of the object or the
radius of the surface- or volume-equivalent sphere). Then the SIR implies that the dimensionless scattering
characteristics of the objects do not depend on specific values of @ and k4, but rather depend on the product of
a and k, traditionally called the size parameter x.

The size parameter can also be expressed in terms of the wavelength of the incident wave in the exterior
region, A = 2n/k;, as x = 2na//. This means that multiplying the typical particle size and the wavelength by
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Fig. 2. Three classes of electromagnetically similar objects. Note that the objects in a class have geometrically similar shapes and
morphologies as well as identical orientations with respect to the laboratory reference frame.
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Fig. 3. Alternative formulation of the scale invariance rule.

the same factor f (see Fig. 3) does not change the dimensionless scattering dyadic and the dimensionless
amplitude scattering matrix.

The SIR can be very helpful in practice because it makes a single computation or measurement applicable to
all couplets (size, wavelength) having the same ratio of size to wavelength, provided that the relative refractive
index remains the same. In particular, the scale invariance rule is the basic physical principle of the so-called
microwave analog technique. The latter involves measurements of microwave scattering by easily
manufactured centimeter-sized objects followed by extrapolation to other wavelengths (e.g., visible or
infrared) by keeping the ratio of size to wavelength fixed (e.g., [2] and Section 8.2 of [1]).
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Other useful scale-invariant quantities are the ratios A4(8** 4")/a and S( )/a. Indeed, since

assuming kja = constant yields k; A4 (R, A™) = constant and k;S(H*?, 4") = constant, dividing the latter

two equalities by the first equality must also yield constants. Furthermore, it is straightforward to demonstrate
that the SIR is also obeyed by the following quantities:

the products of k% and the elements of the phase and scattering matrices;
the products of k% and the optical cross sections;

the products of k* and the extinction matrix elements;

the efficiency factors;

the elements of the normalized scattering matrix;

the coefficients in the expansions of the elements of the normalized scattering matrix in generalized
spherical functions [1,3];

the single-scattering albedo; and

e the asymmetry parameter.

In general, the SIR applies to any dimensionless scattering characteristic.

4. Final remarks

It should be noted that the methodology used in this paper may lack the mathematical rigor that some
mathematics-oriented readers would desire. As one of the reviewers of the initial manuscript remarked, there is
no detailed mathematical proof of the existence and uniqueness of solution of Eq. (6) and of the convergence
of its iterative solution. While there is no doubt that existence, uniqueness, and convergence are important
mathematical issues, it is also obvious that limiting physics research only to problems for which the existence,
uniqueness, and convergence of solution have been established mathematically would have a devastating
practical effect. Therefore, it appears to be reasonable to claim that the foundation of this paper is sufficiently
sound, at least from the standpoint of the physicist.
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The same reviewer also suggested that the SIR might be derived directly from the Helmholtz equation
supplemented by appropriate boundary conditions [4,5] or from the principle of electrodynamic similitude [6].
In this regard, it should be noted that the approach adopted in this paper is based on the
Lippmann—Schwinger equation and totally bypasses the use of the electric field with its “inconvenient”
dimension Vm'; the only quantities involved have dimensions of the type m”, where n is an integer. This
makes it quite easy to switch to the dimensionless quantities defined by Egs. (1)—(5) and (8) and prove the SIR
in a few simple steps. It is not quite obvious that the same can be done in a straightforward way using the
differential equation formalism, especially when the scatterer is an arbitrary heterogeneous body. The SIR
does not involve the electric field per say, which makes Egs. (2.18) and (2.27) of [1] a perfect starting point. It is
not clear whether “eliminating” the electric field can be done as easily in the framework of the Helmholtz
equation and boundary conditions. Demonstrating that this is possible would be an important result.
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